卷积神经网络已使基于医学图像的诊断有了重大改进。但是,越来越明显的是,这些模型在面对虚假的相关性和数据集转移时易受性能降解,例如,领导者(例如,代表性不足的患者群体的表现不足)。在本文中,我们比较了ADNI MRI数据集上的两个分类方案:使用手动选择的体积特征的简单逻辑回归模型,以及对3D MRI数据训练的卷积神经网络。我们在面对不同的数据集拆分,训练集的性别组成和疾病阶段的情况下评估了受过训练的模型的鲁棒性。与其他成像方式中的早期工作相反,我们没有观察到培训数据集中多数组的模型性能的明确模式。取而代之的是,尽管逻辑回归对数据集组成完全可靠,但我们发现,在培训数据集中包括更多女性受试者时,男性和女性受试者的CNN性能通常会提高。我们假设这可能是由于两性病理学的固有差异。此外,在我们的分析中,Logistic回归模型优于3D CNN,强调了基于先验知识的手动特征规范的实用性,以及需要更强大的自动功能选择。
translated by 谷歌翻译
标准空间卷积假设具有常规邻域结构的输入数据。现有方法通常通过修复常规“视图”来概括对不规则点云域的卷积。固定的邻域大小,卷积内核大小对于每个点保持不变。然而,由于点云不是像图像的结构,所以固定邻权给出了不幸的感应偏压。我们提出了一个名为digress图卷积(diffconv)的新图表卷积,不依赖常规视图。DiffConv在空间 - 变化和密度扩张的邻域上操作,其进一步由学习屏蔽的注意机制进行了进一步调整。我们在ModelNet40点云分类基准测试中验证了我们的模型,获得最先进的性能和更稳健的噪声,以及更快的推广速度。
translated by 谷歌翻译
由胰腺管网络的具有挑战性的分割任务激发,本文解决了两个通常遇到生物医学成像问题的问题:分割的拓扑一致性,以及昂贵或困难的注释。我们的贡献如下:a)我们提出了一个拓扑评分,该评分衡量了预测和地面真理分割之间的拓扑和几何一致性,应用于模型选择和验证。 b)我们在时间序列图像数据上为这一困难的嘈杂任务提供了完整的深度学习方法。在我们的方法中,我们首先使用半监管的U-NET体系结构,适用于通用分割任务,该任务共同训练自动编码器和分割网络。然后,随着时间的流逝,我们使用循环的跟踪来进一步改善预测的拓扑。这种半监督的方法使我们能够利用未经通知的数据来学习特征表示,尽管我们的带注释的培训数据的变化非常有限,但该特征表示具有较高可变性的数据。我们的贡献在具有挑战性的分割任务上得到了验证,从嘈杂的实时成像共聚焦显微镜中定位胎儿胰腺中的管状结构。我们表明,我们的半监督模型不仅优于完全监督和预训练的模型,而且还优于在训练过程中考虑拓扑一致性的方法。此外,与经过平均循环得分为0.762的CLDICE的U-NET相比,我们的方法的平均环路得分为0.808。
translated by 谷歌翻译